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FOREWORD

The research effort reported herein was sponsored by the Arnold
Engineering Development Center (AEDC), Air Force Systems Command
(AFSC) under Program Element 62410034/7778, Task 777805, and moni-
tored by DCS/Plans and Technology.

The research study presented was conducted by ARO, Inc. (a sub-
sidiary of Sverdrup and Parcel, Inc.), contract operator of AEDC,
AFSC, Arnold Air Force Station, Tennessee, under Contract
AF 40(600)-1000. The research was performed under ARQO Project No.
PL.2289, and the manuscript was submitted for publication on March 9,
1965.

Many materials compared in this report were commercial items
that were not developed or manufactured to meet Government specifica-
tions, tc withstand the tests to which they were subjected, or to operate
as applied during this study. Any failure to meet the objectives of this
study is no reflection on any of the commercial items discussed herein
or on any manufacturer.

This technical report has been reviewed and is approved.

Marshall K. Kingery Donald D. Carlson
Technical Advisor, Electronics Colonel, USAF
Engineering Division DCS/Plans and Technology

DCS/Plans and Technology
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ABSTRACT

An investigation was made to determine the properties of copper base
alloys at room and elevated temperatures for high heat flux applications,
Literature surveys were conducted to study the properties of copper-
beryllium, copper-zirconium, and other commercial grades of copper
and copper alloys. These properiies were compared with experimental
data for copper-zirconium and two alloys of copper-beryllium at tem-
peratures up to 1000°F, The test data indicated that the copper-beryllium
alloys can be obtained in large sizes with strength levels comparable to
survey property levels, whereas for copper-zirconium it was more dif-
ficult to reach tabulated sirengths because the effectiveness of cold work-
ing was reduced for large size billets, The final selection of an alloy
depends upon the requirements of a specific application.
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SECTION |
INTRODUCTION

An investigation of the physical properties of copper base alloys was
conducted to obtain design information for a backside water-cooled nozzle
liner (Ref. 1) to use in the calibration of an electric arc heater. Property
data were essential to assist in the selection of a nozzle material for this
high heat flux application. The choice of materials was previously narrowed
to the copper base alloys, primarily to take advantage of the high thermal
conductivity these alloys exhibit {Ref. 1}.

A survey of the literature was conducted to assemble data from many
sources on various alloys of copper-beryllium (Cu-Be), copper-zirconium
(Cu-Zr), copper-chromium {Cu-Cr), and commercial copper, both elec-
trolytic tough pitch (ETP) and oxygen-free grades. The experimental
portion of the investigation consisted of tensile tests at ambient and elevat-
ed temperatures. The necessity for obtaining these data arose because a
billet of 3-in. diameter was required to fabricate a nozzle liner, and
virtually all handbook property data were given for strip or small diameter
wire or rod specimens. Uncertainties therefore existed as to the actual
strength obtainable in the large billet sizes, particularly for alloys requir-
ing considerable cold work for quoted strength. The elevated-temperature
tests were of prime importance because of lack of extensive handbook data.

Three alloys were tested: copper-beryllium (Cu-Be) Alloy 10, (Cu-Be)
Alloy 50, and a copper-zirconium (Cu-Zr} alloy. Accordingly, nominal
3-in, -diam billets of each alloy were purchased and machined into test
specimens. The Cu-Be alloys were purchased in the annealed and heat-
treated {AT) condition, and Cu-Zr was cold worked as severely as the
forging equipment of the supplier would permit. Testing was carried
out at the Metallurgical Laboratory, Engineering Support Facility (ESF),
Arnold Engineering Development Center,

SECTION 1l
PROPERTIES OF COPPER-BERYLLIUM ALLOYS

The beryllium alloys of copper have the highest strength of any of the
copper base alloys. The Cu-Be alloys are generally considered for use in
high heat flux applications since these alloys have strengths comparable to
steel while exhibiting thermal conductivities as high as 30 to 70 percent
of pure copper, The wrought Cu-Be alloys can be divided into two general
types: (1) the high strength alloys and (2) the high conductivity alloys.
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The high strength alloys usually contain between 1,5- and 2., 2-percent
Be, whereas the high conductivity alloys contain between 0. 25- and
0.70-percent Be. The physical and mechanical properties from both
alloy groups are presented.

2.1 HIGH STRENGTH ALLOYS
Alloys 25 and 165 are two major types of high strength wrought
Cu-Be, Alloy 25 being the most widely used. The following table

shows the chemical composition of these alloys.

Chemical Composition of High Strength Cu-Be Alloys

Alloy Beryllium Cobalt Copper
- 29 1.80 - 2,05% [0.20 - 0.35% Balance
165 1,60 - 1.80% |[0.20 - 0.35% | Balance

Information from several sources about the engineering properties
is presented in Table I. The form of the material, that is, rod, bar,
strip, wire, or billet, may have a considerable influence on the strength,
and therefore the form is noted where information was available. Cu-Be
alloys derive their high strength principally from heat treating or age
hardening, The alloys considered here are in (1) the AT condition and
(2) the HT condition. Table I shows that only small gains in strength
can be obtained by cold working Cu-Be.

Values of thermal conductivity, linear coefficient of thermal expan-
sion, and Poisson's ratio are not generally determined in a standard
materials laboratory; therefore little data were available for these
properties, It is assumed that these properties remain constant for all
forms and heat treatments of the material. The thermal conductivity for
Alloy 25 at temperatures to 400°F is shown in Fig. 1. The conductivity
increases with temperature from 0. 22 Btu-in, /sec-ft2-°F at 50°F to
0.27 at 400°F (Ref. 4).

The elevated-temperature strength data on Alloy 25 are presented in
Fig. 2. In all cases the strength decreased slowly with increasing tem-
perature up to 500°F. Above 500°F a rapid reduction in strength resulted.
The elongation and modulus of elasticity at temperatures up to 1000°F are
shown in Fig. 3. The elongation slowly decreased from room temperature
levels to a low value of approximately 2 percent at temperatures from
300 to 600°F for both the AT and HT conditions, which indicated this
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material to have relatively low ductility at these temperatures. The
modulus of elasticity of Alloy 25 decreased rapidly above 500°F and at
1000°F was less than 5 x 106 psi for the AT and HT conditions.

2.2 HIGH CONDUCTIVITY ALLOYS

Among the Cu-Be alloys in this category, Alloys 10 and 50 are
probably the most common. The compositions of the two alloys are
similar, the primary difference being a substitution of silver”for part
of the cobalt in Alloy 50. The composition of these alloys is presented
in the following table.

Chemical Composition of Cu-Be High Conductivity Alloys

Alloy | Beryllium Cobalt silver Copper
10 0.45 - 0, 60% 2.35 - 2.60% -— Balance
50 0.25 - 0.50% 1.40 - 1.70% | 0.80 - 1.10% | Balance

The engineering properties of the high conductivity alloys at room
temperature are presented in Table II for the AT and HT conditions.
The tabulated data indicate that AT billets have strengths about 10 to
20 percent lower than the strip or bar stock, since the large size of
billets generally precludes uniform heat treatment, The high conductivity
alloys, when compared with the high strength alloys of Table I, showed
about 40-percent decrease in strength but sizable increases in ductility
and thermal conductivity. The modulus of elasticity and linear coef-
ficient of thermal expansion are about the same for both groups of alloys.

The strength and elongation at elevated temperatures of Cu-Be
Alloy 10 in the AT condition are presented in Fig. 4. The strength
decreases rapidly from 400 to 600°F, whereas the elongation reduces
sharply at temperatures above 500°F. The extremely low elongation
above 500°F indicates that Alloy 10 exhibits hot brittleness in this
temperature regime.

Thermal conductivity data at elevated temperatures to 400°F
for Alloy 50 are shown in Fig. 1. The conductivity can be seen {o
increase slowly as the temperature rises. These data represent
typical values of conductivity expected for this alloy but do not
account for small variations which may be caused by heat treatment,
form, and size effects.
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SECTION 1l
PROPERTIES OF COPPER-ZIRCONIUM ALLOY

The primary type of Cu-Zr alloy considered for nozzle material con-
sists of a high purity copper which is oxygen free and contains from @, 13-
to 0, 15-percent zirconium. This alloy has a thermal conductivity from
90 to 95 percent that of pure copper. The Cu-Zr is used in high heat flux
applications because of its high thermal conductivity and reasonably high
strength at elevated temperatures. Table III presents some of the avail-
able property data for Cu-Zr at room temperature. Ultimate strengths
of 60, 000 psi and yield strengths of 50,000 psi are typical values expected
from Cu-Zr. However, the strength depends to a large extent upon the
size and the shape of the piece needed, that is, sheet, rod, and billet.
Nozzle applications may require sizes which will not allow the tabulated
strength values to be actually obtained.

The strength of Cu-Zr is derived primarily from cold working the
annealed alloy. The effect of cold working on Cu-Zr alloy is shown in
Fig. 5, It can be seen that the yield and ultimate strengths increase
rapidly for amounts of cold working up to 40 percent; above this amount
the cold working is less effective, but the strength continues to increase
slowly. However, the elongation decreases rapidly for amounts of cold
work up to 40 percent and remains reasonably constant with additional
cold working.

An additional 10- to 15-percent increase in strength is obtained by
age hardening. This is accomplished by reheating the cold-worked alloy
from 700 to 800°F for approximately 1 hr. Age hardening Cu-Zr in this
manner increases its electrical conductivity by about 30 percent. For
most metals, electrical and thermal conductivities follow roughly paral-
lel paths, so it may be tentatively concluded that the thermal conductivity
is also increased by age hardening, although no experimental data are
available for Cu-Zr to support this conjecture.

The elevated-temperature data taken from Ref. 10 are plotted in
Fig. 6. The reduction of area and ultimate strength of Cu-Zr
(0. 15 percent Zr) for temperatures from ambient to 1100°F is presented
for 54- and 84-percent cold-worked alloys. The ultimate strength
decreases slowly with temperatures to 600°F and then decreases rapidly
for temperatures above 600°F for both materials, For temperatures
from ambient to 800°F the 84-percent cold-worked alloy has strength
from 5000 to 8000 psi higher than the b4-percent alloy.

The percent reduction of area at elevated temperature is also pre-
sented in Fig. 6 for the 54- and 84-percent cold-worked alloys. The
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area reduction for both alloys decreases 6 to 8 percent from ambient
to 500°F and then increases slowly as the temperature is increased
above 500°F. The 54-percent alloy exhibits greater area reduction,
as would be expected. Both alloys maintain a high level of ductility
throughout the elevated-temperature range.

Other propcrties at elevated temperature which are significant
include 0, 2-percent yield strength, percent elongation, and modulus
of elasticity, Numerical values for these propertics are presented
in the following table (from Refs. 8 and 10} at temperatures of 750,
930, and 1110°F for 0.25-in, -diam Cu-Zr rod specimens cold worked
to 54 and 84 percent.

Cold Test 0. 2-percent Flongation Modulus of
Worked, | Temperature, Yield ' Elasticity,
percent °F Strength, percent psi

psi
54 750 39, 000 9.0 17.0 x 106
930 28,000 9,0 15,4 x 106
1110 17, 700 10,0 14.6 x 106 il
84 750 45,000 9.0 15.7 x 108
930 25, 800 9.0 16.9 x 106 |
1110 - 84.0 14.8 x 106

At 750°F the yield strength for the 84-percent alloy is 6000 psi higher
than the 54-percent alloy. However, thc strength decreases more rapidly
for the 84-percent alloy than for the 54-percent alloy at temperatures
above 750°F. This trend parallels that shown in Fig. 6 for the ultimate
strength,

The thermal conductivity at elevated temperatures is indicated in
Fig. 1. The conductivity remains constant for all temperatures shown.
The availability of thermal conductivity data is highly limited, and values
presented should be used with extreme caution.

SECTION IV
PROPERTIES OF MISCELLANEOUS COPPER BASE MATERIALS

Several additional materials, some containing small amounts of
alloying elements in copper, have high thermal conductivities and may
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be considered for high heat flux applications, These materials include
electrolytic tough pitch copper, copper-sulphur, leaded copper, copper-
chromium, oxygen-free copper, copper-tellurium, and copper-
phosphorous. Of these, only electrolytic tough pitch (ETP) copper,
copper-chromium (Cu-Cr), and oxygen-free copper are considered in
this report.

4.1 COPPER-CHROMIUM

The most common alloy of copper and chromium in the copper rich
alloys is a binary alloy containing from 0, 70- to 0, 80-percent chromium
and the balance copper., As with Cu-Zr, its strength is derived from
cold working and precipitation hardening. The room temperature proper-
ties which may be attained by cold working to small diameters and heat
treating are presented in the following table,

Ultimate | 0. 5-percent = .
Alloy Strength,|  Yield E1°nga'“:’“= k  |Ref.
psi Strength, psi percen
899% Cu, 0.77% Cr, 75, 200 67, 800 23.5 - 12
0.015-in, -diam wire
99% Cu, 0.85% Cr, 70, 000 60, 000 20 0.62 ] 13
rod

While the strength of Cu-Cr is higher than Cu-Zr at room temperature,
the thermal conductivity is slightly lower because of the greater per-
centage of alloy material in Cu-Cr,

The elevated-temperature properties of Cu-0. 70-percent Cr are
shown in Fig., T for a 0,25-in. ~diam rod. The ultimate strength decreases
by an average of 4000 psi for each 100°F temperature rise up to 800°F,
Above 800°F the strength decreases rapidly to the annealed level. The
percent reduction of area, a measure of material ductility, is also pre-
sented as a function of test temperature in Fig, 7. At temperatures below
900°F the reduction of area decreases as the temperature increases,

Above 400°F the decrease is rapid, indicating a hot brittleness condition
in the alloy. Above 1000°F the annealing action allows the material to
become more ductile,
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4.2 ELECTROLYTIC TOUGH PITCH COPPER

Flectrolytic tough pitch (ETP) copper is a commercial grade of
copper {99.9-percent Cu) with approximately 0.04-percent oxygen. The
oxygen results from the elimination of impurities in the refining process.
This material exhibits high thermal conductivity and compares favorably
with pure copper as shown in Fig. 1. The room temperature mechanical
properties are presented in Table IV. The ultimate and yield strength
values of ETP copper in the cold-worked condition are high enough for
use in high heat flux applications.

The elevated-temperature yield strength and modulus of elasticity
are shown in Fig. 8 for 84-percent CW and 50-percent CW ETP copper,
respectively. The yield strength remains above 40, 000 psi for test tem-
peratures up to 300°F. However, at temperatures above 300°F the
strength decreases rapidly to the annealed strength level at 500°F. The
modulus of elasticity decreases steadily as the test temperature is in-
creased above room temperature. These temperature properties of
ETP copper made the use of this material undesirable for elevated-tem-
perature applications. However, it is satisfactory for use in highly
cooled, high heat flux conditions because of its high thermal conductivity
and high room temperature strength,

4.3 OXYGEN-FREE COFPER

Oxygen-free copper is characterized by refining under a controlled
atmosphere which minimizes the presence of oxygen in the copper. The
oxygen-free copper thereby has more ductility than electrolytic tough
pitch copper and is less susceptible to hot brittleness when subjected
to reducing atmospheres at elevated temperatures. Ctherwise, the
mechanical properties of oxygen-{free copper are very similar to other
high conductivity coppers.

The room temperature properties of oxygen-free copper are pre-
gented in Table V for several forms in the cold-worked condition. In
general, the tensile properties are similar to ETP copper. The reduc-
tion of area in tensile tests of oxygen-free copper range from B6 to 91
percent for the cases indicated in Table V. Yield strengths range from
29,400 to 66, 000 psi for various forms and degrees of cold work, These
strengths are in the usable range for high heat flux applications.

While no data are presented for properties at elevated temperatures,
the estimated temperature limit is from 300 to 500°F. Above this tem-
perature range the amount of annealing becomes appreciahble, and the
strength is reduced.
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SECTION V
TENSILE TEST PROGRAM

A test program was conducted to determine experimentally the
mechanical properties of the various copper alloys previously discussed.
The test specimens were machined from material samples of the size
range necessary to fabricate various nozzle shapes and components for
high heat flux applications, The test results are therefore representa-
tive of the best mechanical properties which can reasonably be obtained
with fabricated hardware rather than the properties of cold-drawn wire
often listed for these materials. The tensile tests were conducted at
both room and elevated temperatures to 1000°F. The tests were per-
formed by the Chemical and Metallurgical Branch, ESF.

5.1 DESCRIPTION OF BILLETS AND TEST SPECIMENS
Three copper base alloys were purchased for property evaluation
and selection of a nozzle material;: Cu-Be Alloy 10, Cu-Be Alloy 50,

and Cu-Zr,

The chemical composition of these alloys and the specified condition
of these materials are presented in the following table,

Alloy Typical Compesition Condition

Cu-Be 0.40-0. 70% Be Annealed and heat

Alloy 10 2,35-2,70% Co treated approximately
Balance Cu 3 hr at 90Q°F

Cu-Be 0. 25-0, 50% Be Annealed and heat

Alloy 30 1.40-1, 70% Co treated approximately
0.90-1.10% Ag 3 hr at 800°F
Balance Cu

Cu-Zr 0.13-0.15% Zr Annealed, cold forged
Balance oxygen- to approximately 75% CW,
free copper and aged 1 to 2 hr at

750-800°F

These materials were purchased in billets with a nominal 3-in.
diameter and 12 in. long. The billets were then sawed into pieces from
which the specimens were machined. Figure 9 shows a typical tensile
specimen used in this program. The specimens were cut from the billet
s0 that the cross section was parallel to the billet cross section, The
number of specimens obtained from the billet cross section ranged from
7 to 16 depending on the specimen size. The total number of specimens



AEDC-TR-.65-72

tested was 55: however, not all specimens tested are reported herein
since some of the materials were not received in the condition required
by the purchase specifications,.

5.2 TEST PROCEDURE

The specimens were numbered according to their distance from the
billet centerline., Tests at room temperature were then performed to
determine if a property pattern existed in the billet cross section be-
cause of uneven cold working and heat treatment. Once it was established
that no differences in data existed because of specimen location in the bil-
let cross section beyond normal experimental data scatter, the elevated-
temperature tests were performed irrespective of specimen location.

A total of 30 specimens were tested at room temperature and 25
specimens were tested at elevated temperatures. For the beryliium-
copper, tests were made at room temperature and elevated temperatures
at intervals of 100°F beginning at 200°F. Tests on Cu-Zr were performed
at room temperature and elevated temperatures at 200°F intervals begin-
ning at 200°F. For all tests, measuremenis were recorded for ultimate
and 0, 2-percent yield strengths, percent elongation, and percent reduction
of area. The modulus of elasticity was measured at room temperature
only.

Hardness tests were made across the billet to determine billet uni-
formity. Also random hardness tests were made on the specimens after
tensile tests were completed, The chemical composition of each material
was checked for proper alloying constituents. '

5.3 TEST RESULTS

The results are analyzed and presented from tests on two Cu-Be bil-
lets and four Cu-Zr billets, Data from these tensile tests at room tem-
perature are shown in Table VI. The strength and hardness levels of the
Cu-Be alloys were considerably higher than those of Cu-Zr. However,
the modulus of elasticity and percent elongation were about equal., Of
the Cu-Be alloys, Alloy 10 had the higher strength resulting primarily
from the higher Be percentage.

The four Cu-Zr billets in Table VI were received with different levels
of hardness. The effectiveness of the cold-working procedure is indicated
by the hardness of this alloy. Thus the data presented in Table VI for
Cu-Zr were separated into four hardness levels. Two of the Cu-Zr alloys
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are above the normal Zr range of 0. 13- to 0, 15-percent Zr. However,
as indicated in Ref. 11, the higher Zr content should not affect the prop-
erties of the alloy significantly,

The ultimate strength of Cu-Zr ranged from 44, 800 to 56, 400 psi
depending upon the hardness level, and both the ultimate and yield
strengths increased as the hardness increased, The Cu-Zr had a much
higher percent reduction of area than the Cu-Be alloys, which indicates
that Cu-Zr showed considerable ''neck down' prior to specimen failure,
whereas the Cu-Be was characterized by uniform yielding followed by
fracture (see Fig. 10), |

The tensile strength of Cu-Be Alloys 10 and 50 is presented in Fig. 11
at elevated temperatures. The ultimate strength for both materials
decreased rapidly as the temperature increased to 500 and 600°F. How-
ever, the yield strength remained nearly constant with only a slight
tendency to decrease with increasing test temperature.

Strength data at elevated temperatures to 1000°F are presented in
Fig. 12 for the Cu-Zr materials. The highest cold-worked billets
generally exhibited the highest strength levels throughout the temperature
range; however, the advantage was less at the higher test temperatures.
As shown in Fig. 12, the Cu-Zr maintained a high percentage of the
room temperature strength at temperatures up to 800°F,

The other properties measured for the elevated-temperature tests
were the percent elongation and percent reduction of area, The elonga-
tion data are presented in Fig. 13 for Cu-Be and Cu-Zr. The elongation
for Cu-Be was approximately 20 percent but decreased sharply at 400°F
(Fig. 13a). The Cu-Zr data ranged from 15- to 22-percent elongation
for all temperatures up to 1000°F (Fig. 13b). The percent reduction of
area for these same alloys is shown in Fig. 14. The average reduction
of area for Cu-Zr is 70 percent, which increased to 77 percent at 1000°F.
The Cu-Be alloys, however, which had an average reduction of area of
30 percent at temperatures up to 300°F, showed a sharp decrease at
400°F and above. The photograph of the Cu-Be and Cu-Zr specimens
tested at 600°F (Fig. 15) illustrates the type of fracture characteristic
of these materials, At temperatures above 500°F, the Cu-Be specimen
generally fractured at points of high local stress, that is, at the base of
the threads at the specimen end or at punch marks used for strain meas-
urements, These fractures indicate the brittleness of this material at
elevated temperature.

10
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SECTION VI
COMPARISON OF AVAILABLE DATA WITH TEST RESULTS

The experimental test data were compared with the tabulated data
presented in this report from other sources, The data in Table VI for
Cu-Be Alloy 10 show experimental values of 109, 600 and 80, 800 psi
for the ultimate and 0, 2-percent yield strengths, respectively. These
strengths, when compared with Alloy 10 (AT) in Table II, lie within the
range of most of the strength values listed and at the upper end of the
sirength range for the billet of Ref. 6. The elevated-temperature prop-
erties are compared in Fig. 16. The experimental strength data for
Alloy 10 are equal to or greater than the curves of Ref. 9, whereas the
percent elongation date are about equal to the referenced data.

No direct comparisons could be made for the Alloy 50 since all
referenced data are in the HT condition; however, higher strength
values were expected for the referenced data as a result of the cold
working. :

The Cu-Zr experimental strength data at room temperature in
Table VI, when compared with that in Table III, showed the referenced
data in general to have sirengths listed which are higher than the experi-
mental data. However, the data for 40-percent cold-worked sheet and
rod in Ref. 8 compare with strength data obtained in some of the experi-
mental tests on cold-worked billets. Elevated-temperature tests on two
Cu-Zr billets are compared with cold-worked 0, 25~-in. -~diam specimens
of Ref. 10 in Fig. 17. The experimental data had strength levels approxi-
mately two-thirds of the data level shown from Ref, 10 at temperatures
up to 600°F, From 600 to 1000°F the decrease in strength of the refer-
enced data was much greater than the experimental data. The exact per-
cent of cold working for the experimental test data was unknown; however,
considerable size reduction in the billet by cold forging was accomplished
as evidenced by the hardness levels shown for these billets. While the
area reduction may have been as much as 75 percent in the billets tested,
the effective cold working was reduced by the inability to cbtain uniform
hardening in large size billets.

The experimental test data indicated that the Cu-Be alloys can be
obtained in large billets with strength as high as would be expected from
published data, since the strength above the annealed level is derived
primarily from age hardening. Conversely, the strength of Cu-Zr bil-
let materials cannot be expected to reach values listed for small highly
cold-worked specimen rods and wires, since the primary increase in
strength above the annealed strength level for Cu-Zr alloy is accomplished

11
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by mechanical working. These results were expected since materials in
large size pieces are easier to age uniformly than to work harden effec-
tively.

SECTION Vil
CONCLUDING REMARKS

The selection of an alloy for high heat flux requirements depends
upon the particular application intended. The Cu-Be Alloy 25 had the
highest strength of the alloys reported but the lowest thermal conduc-
tivity, whereas ETP copper and oxygen-free copper both have much
lower strength but with thermal conductivity approaching that of pure
copper. The other copper alloys can be grouped into categories which
have strengths less than Alloy 25 and conductivities less than the un-
alloyed coppers. The product of sirength and thermal conductivity is
about equal for all of these copper alloys and therefore has equal poten-
tial for high heat flux applications. Other factors then dictate the choice
of alloy selected. For example, oxygen-free copper and ETP copper
(Fig. 8) showed sharp decreases in strength above 300°F. The Cu-Be
alloys showed similar results above 500°F {Figs. 2 and 4). The Cu-Zr
and Cu-Cr both maintained a high percentage of their room temperature
strength up to 800°F., However, at elevated temperatures Cu-Cr and
Cu-Be Alloys 10 and 50 exhibited hot brittleness (Figs. 4, 7, and 13a),
The Cu-Zr has the best elevated-temperature characteristics in that it
maintains most of its room temperature strength to 1000°F without
becoming brittle, However, it is normally a much softer and lower
strength alloy than the Cu-Be alloys., These factors all contribute to the
proper selection of a material for high heat flux applications.
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Fig. 10 Room Temperature Fracture of Cu-Be and Cu-Zr Test Specimens
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Fig. 15 Fracture of Cu-Be and Cu-Zr Test Specimens at 600 °F
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TABLE |
ROOM TEMPERATURE PROPERTIES OF HIGH STRENGTH Cu-Be ALLOYS

0,2-per=-
Ultimate ccnt Yield k,
Alloy Strength| strength |g x 107% [ Elong, |R of A, | a x 107 Btu-in.
psi' X ;21 , psi percent |pcrcent 1/°F sec—ft2_°F

. {(AT) 165-180 - - 5-8 - - - -

25 Strip  (gmr) 190-205 - - 1-2 - - - -

(AT) 165-180 - - 3-10 - - - -

25 Rod {(HT) 185-215 - - 2-5 - - - -

o5 { (AT) 165-180 | 130-150 19 - - 9.3 - -

(HT) 185-210 | 160-185 - - - - - -

25 - - - - - - 0.21-0,25

. ((AT) 150-165 - - 5-8 - - - -

165 Strlp{(ﬂr) 180-195 - - 1-2 - - - -

165 { (AT 150-175 | 120-145 18.5 - - 9.3 - -

(HT) 170-195 | 150-175 - - - : - _

165 - - - - - - 0.21-0.25 -
25 {(AT) 165-180 | 130-150 19 312 5-15 | 9.2 0.24 - 3
(HT) 180-210 | 160-175 19 2-8 3-10 9.3 0.22 {
25 (HT) 190-210 | 180-205 - 1-4 - - - 4
. ({AT) 165-195 | 140-170 19 5-10 - 9.3 0.21-0.25 ) 5
25 Strip {(HT) 190-215 | 165-195 19 1-4 - - - - /
. {(AT) 165-190 | 140-175 18.5 4-10 - - 0.22 - 6

25 strip {(HT) 190-215 | 165-205 - 1-4 - - - -

25{Bar and Plate (AT) | 165-180 | 145-175 - 1-10 - - - -

Billet (AT) 150-175 | 120-150 - 1-3 - - - -

. {(AT) 150-180 | 120-160 18 4-10 - - 0.22 -

165 Strip {(HT) 180-200 | 140-180 - 1-4 - - - -

165{Bar and Plate (AT)| 150-180 | 125-155 - 4-10 - - - -

Billet (AT) 135-170 | 100-135 - 1-4 - - -

£e
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TABLE Il

ROOM TEMPERATURE PROPERTIES OF HIGH CONDUCTIVITY Cu-Be ALLOYS

Ultimate 0.2-per-
Strength |cent Yield k,
Alloy x 1072 Strength E x 10‘," Elong, |R of A, | x 105,' Btu=-in, Ref .
—3 - —
psi x 1072, psi psi percent | percent | 1/°F sec-it7-°F
. [ (AT) 100-110 - - 8-12 - - ‘- 2
10 Strip { (HT) 105-130 - - 5-10 - - ;-
(AT) 100-120 - 10-20 - - -
10 Rod and Bar {(HTJ 100-120 - o-20 . - -
50 Rod and Bar (HT) 110-130 - - 8-15 - - -
10 {(AT) 100-120 70-90 18 - - 9.8 0.40-0 .50
(HT) 110-140 100-120 - - - - -
50 {(AT) - - 18 - - 9.8 0.42-0.47
(HT) 110-140 100-120 - - - - - ]
10 { (AT) 110-120 75-85 18 10-15 15-35 9.9 0.44-0.50 3
(BT) 120-140 80-90 18 8-12 10-30 | 9.8 0.39-0.44 {
10  (HT) 110-130 100-120 - 5-13 - - - 1
. {(AT) 100-110 80-100 - 8-12 - - 0.44 6
10 Strip {(HT) 110-125 | 100-120 - 5-8 - Z
(AT) | 100-120 80-100 - 10-25 - - -
10 Bar and Plate § iyyy | 110-130 | 100-120 - 8-20 - - -
10 Billet (AT) 901110 70-80 - 3-15 - - -

ZTL-G9-dL-2Q3V
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TABLE iUl

ROOM TEMPERATURE PROPERTIES OF AGE HARDENED Cu-Zr ALLOY

. 0.2-per- k
Ultimate '
Alloy Form Strength, | Sont ¥ield | 5 o 10-5, | Elong, | R of A, | « x 108, | _ Btu-in. 1 pes
Strength, ° —
psi psi psi percent| percent 1/°F sec-ft=-°F
Rod { 40% CW 50,000 44,000 - 20 - - - 8

80% CW 62,000 55, 000 - 12 - - -
Sheet, Hard 54,000 45,000 - 15 - - -
Wire § 20% C¥ 62,000 54,000 - 21 - = -
80% CW 71,000 62,000 - 21 - - -

- 83% CW - - - - - - 0.66
Rod (0.25-in. 54% CW | 62,000 - - - 88 - - 10
diam) 84% cw| 71,000 - - - Bl - -

- 84% CW - - - - - 9.04 -

- 54% CW - - 19,3 - - - - 11
Wire 90% CW 70,000 61,000 - 10 - - - {
Cold-Rolled 53, 000 50,000 - 10 54 - - 12
Rod (1-in, diam) (HT) 60, 000 50,000 - 12 - 9.8 -~ 0.71 13
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TABLE |V
ROOM TEMPERATURE PROPERTIES OF ELECTROLYTIC TOUGH PITCH COPPER
- 0.2—9&1‘—- k
Jltimate : ’
Alloy Form Rtrength, g:::n;::::.d Ex 10-63 Elong, R of A, a x 106! Btu-in,
psi psi psi percent | percent| 1/°F sec—ft=—'F
Rod(1/8-in, diam), 84% CW 55,400 49, 500 18.0 11.0 - - - 12
Strip(0.1-in. thick), 50% Cw( 52,500 46,000+« | 17.0 14.0 - - - {
Rod(l-in. diam), Hard 43,000 40,000 %+ - 15.0 - 9.8t 0.75 13
Wire(0.080-in, diam), Hard | 66,000 - - 1.5 - 9.8 0.75 '
Rod - - - - - 9.5 0.73 7
Wire (0.081-in, 84.4% CW 65,200 65,000 - 1.5 54 - -
diam) 37.1% 57,000 55,000 - 2.0 64 - -
Rod (0.257-in, 20,5% CW 45,700 43,400 - 3.5 61.5 - -
square) 8.5% 35, 300 30,500 - 27.0 63 - -

*0.l-percent offset
**0._5-percent offszel

Ta values are average coeflicients in the temperature range from
ambient to 600°F.
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TABLE V

ROOM TEMPERATURE PROPERTIES OF OXYGEN-FREE COPPER

0.2~per-

- k
Ultimate ',
Alloy Form Strength, | “Sirencth | Elong, [ B of &, | o x 10, [ Btu-in. |
psi psi ' |percent| percent 1/°F sac-ft2-°F *
Rod (l-in. diam), Hard 48,000 40,000% 15 - 9.8 0.75 13
Tube (I-in. diam), Hard 45,.000 40, 000+* - - - - ¥
Wire (0.081-1in, B4 .4% CW 66, 300 66,000 1.5 91 - - 14
diam) 37.1% Cw 57,500 57,000 2.0 a1 - -
Rod (0.257-in. 20,5% CW 45,000 44,100 4.5 B5.5 - -
square) { 8.5% CW 34,400 29,400 30 8B - -
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TABLE VI

EXPERIMENTAL ROOM TEMPERATURE DATA FOR VARIOUS 3-IN.-DIAM COPPER ALLOY BILL ET MATERIALS

0.2-per-
No. of Ultimate cent Yield
Alloy Composition Specimens | Hardness, | Strength, Strength, E x 1079, Elong, | R of A,
Tested Ry psi psi psi percent percent
Cu-Be Alloy 10 (AT)
0.68% Be, 2.25% Co, 3 04 109, 600 80, 900 20 22 .1 ]
Bal. Cu
Cu-Be Alloy 50 (AT)
0.40% Be, 1.50% Co, 3 93 100,900 72,500 19 22 28
1.00% Ag, Bal. Cu
Cu-Zr
0.16% Zr, Bal. Cu 2 48 44 800 40, 200 17.7 22 74.6
0.18% Zr, Bal. Cu 3 57 50, 200 43,000 17.7 22 65
0.14% Zr, Bal. Cu 5 61 51,400 41,700 19.2 25.3 73
0.13% Zr, Bal. Cu 8 68 56, 400 47,000 18.9 24.9 73.3
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